Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 111(2): e16280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38334273

RESUMO

PREMISE: Cultivation and naturalization of plants beyond their natural range can bring previously geographically isolated taxa together, increasing the opportunity for hybridization, the outcomes of which are not predictable. Here, we explored the phenotypic and genomic effects of interspecific gene flow following the widespread cultivation of Mentha spicata (spearmint), M. longifolia, and M. suaveolens. METHODS: We morphologically evaluated 155 herbarium specimens of three Mentha species and sequenced the genomes of a subset of 93 specimens. We analyzed the whole genomes in a population and the phylogenetic framework and associated genomic classifications in conjunction with the morphological assessments. RESULTS: The allopolyploid M. spicata, which likely evolved in cultivation, had altered trichome characters, that is possibly a product of human selection for a more palatable plant or a byproduct of selection for essential oils. There were signs of genetic admixture between mints, including allopolyploids, indicating that the reproductive barriers between Mentha species with differences in ploidy are likely incomplete. Still, despite gene flow between species, we found that genetic variants associated with the cultivated trichome morphology continue to segregate. CONCLUSIONS: Although hybridization, allopolyploidization, and human selection during cultivation can increase species richness (e.g., by forming hybrid taxa), we showed that unless reproductive barriers are strong, these processes can also result in mixing of genes between species and the potential loss of natural biodiversity.


Assuntos
Mentha , Óleos Voláteis , Humanos , Mentha/genética , Fluxo Gênico , Filogenia , Óleos Voláteis/farmacologia , Hibridização Genética
2.
Mol Phylogenet Evol ; 54(2): 607-16, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19825422

RESUMO

The numerous disjunct plant distributions between Macaronesia and eastern Africa-Arabia suggest that these could be the relicts of a once continuous vegetation belt along the southern Tethys, which has been fragmented by Upper Miocene-Pliocene aridification. We tested this vicariance hypothesis with a phylogenetic analysis of Campylanthus (Plantaginaceae), based on nuclear and plastid DNA sequence data. Our results indicate a basal split within Campylanthus giving rise to Macaronesian and Eritreo-Arabian lineages in the Pliocene/Upper Miocene. This is consistent with the vicariance hypothesis, thus obviating the need to postulate trans-Saharan long-distance dispersal. The biogeography of Campylanthus may parallel patterns in other plant groups and the implications for our understanding of the biogeography of northern and eastern Africa, and Arabia are discussed.


Assuntos
Evolução Molecular , Filogenia , Plantago/genética , África Oriental , Teorema de Bayes , Núcleo Celular/genética , DNA de Plantas/genética , Geografia , Funções Verossimilhança , Oriente Médio , Plantago/classificação , Plastídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...